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Abstract
Ambulatory wearable monitoring of human physiology is increasingly utilized in the fields of psychology, movement sci-
ences, and medicine. With the rapid growth of available consumer- and research-oriented wearables, researchers are faced 
with a multitude of devices to choose from. It is unfeasible timewise for researchers to determine all relevant technical speci-
fications, available signals, signal sampling details, and (raw) data availability, and conduct a search of studies regarding the 
reliability, validity, and usability of wearables. Thus, selection of wearables for a given study proves highly challenging and 
will often be unsystematic and uninformed. The 10-year research program Stress in Action initiated a publicly accessible 
database of wearable ambulatory monitoring devices. We outline the genesis and final structure of the first version of the 
Stress in Action Wearables Database (SiA-WD) and a summary of the characteristics of the wearables it currently contains. 
Furthermore, one short-term (2 days) and one long-term (3 months) scenario from the field of stress research are provided 
with walkthroughs of how the SiA-WD can help select the optimal wearable for a specific research project. Insights gathered 
include the scarceness of studies testing wearable user-friendliness, inconsistencies in reported validity statistics, and impre-
cise manufacturer documentation on recorded physiological data such as sampling rate (or window) of signals and parameter 
extraction. The SiA-WD is the first open-access database to simultaneously include physiological sampling information and 
technical specifications along with a systematic reliability, validity, and usability search. It will be iteratively expanded to 
facilitate informed and time-efficient wearable selection. For access to the database, see the following: https://​osf.​io/​umgvp/.
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Introduction

Ambulatory wearable devices are being used in various 
fields, such as psychology, movement sciences, and medi-
cine, for the continuous monitoring of a multitude of physi-
ological signals in daily life (Pevnick et al., 2018). Ambula-
tory wearable devices, shortened to wearables hereafter, can 
be used by (clinical) researchers (Patel et al., 2012, 2021) as 
well as the public to track physical parameters like activity 
level, sleep duration, respiration rate, and heart rate vari-
ability. These wearables may come in forms such as smart 
garments with embedded sensors (e.g., Hexoskin by Carré 
Technologies), smartwatches (e.g., Fitbit Sense 2), rings 
(e.g., Oura Ring by Oura Health, ResRing by BIOPAC), 
stick-on electrodes connected to a carry-on central process-
ing unit (VU-AMS 5 fs by Vrije Universiteit Amsterdam), 
stretchable belts (e.g., Equvital Eq. 02 +), or headbands 

Myrte Schoenmakers, Melisa Saygin and Magdalena Sikora 
contributed equally to this work and share first authorship.

The author order was determined using a random list generator 
(https://​www.​random.​org/​lists/).

 *	 Eco de Geus 
	 eco.de.geus@vu.nl

1	 Department of Biological Psychology, VU Amsterdam, Van 
Der Boechorststraat 7, 1081 BT Amsterdam, Netherlands

2	 Amsterdam Public Health Research Institute, Amsterdam 
UMC, Amsterdam, The Netherlands

3	 Department of Psychology, Health and Technology, 
University of Twente, Enschede, The Netherlands

4	 Center for Contextual Psychiatry, Department 
of Neurosciences, KU Leuven, Louvain, Belgium

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-025-02685-4&domain=pdf
http://orcid.org/0009-0001-3458-162X
https://osf.io/umgvp/
https://www.random.org/lists/


	 Behavior Research Methods (2025) 57:171171  Page 2 of 23

(Muse 2 by Interaxon) (Majumder et al., 2017; Peake et al., 
2018). As the already extensive availability of ambulatory 
wearables continues to rapidly increase, it becomes chal-
lenging to find the optimal wearable for a given research 
question (Haddad et al., 2020). While validity and reliability 
are still the most prominent factors to consider in choos-
ing a measurement device, other criteria have considerable 
pragmatic implications, such as user-friendliness to reduce 
drop-out rates, data security to avoid data breaches (Areia 
et al., 2020), and low cost to allow larger-scaled research 
(Haddad et al., 2020).

In the field of stress research, the ability to monitor con-
tinuous physiological outcomes is becoming increasingly 
important to improve ecological and predictive validity 
(De Geus & Gevonden, 2024). However, making informed 
between-device comparisons and selecting the optimal 
wearable for physiological stress monitoring has proven 
challenging (Giurgiu et al., 2022; Pevnick et al., 2018). 
This is due to both the vast number of devices and the time 
investment associated with examining all reliability, valid-
ity, and usability papers per device. Furthermore, the list of 
devices that meet the required conditions for a study (e.g., 
specific set of recorded signals) is not always easy to identify 
through rudimentary Web or literature searches. This may, 
for example, lead researchers to discover that a device does 
not allow for raw data extraction only after the purchase of 
the device or collection of data. Selection of devices is often 
based on recommendations of colleagues or by relying on 
the most often used wearables in the existing literature. This 
leads to the same devices being used time and again, which 
hampers the adoption of newer technology that may have 
better signal quality or offer new measures. In the current 
paper, we consider both physiological signals and param-
eters. Signals refer to continuous time-series data such as a 
photoplethysmography or an electrodermal activity sensor 
recording. Parameters are derived from these signals over 
particular time windows, and examples include heart rate 
and skin conductance level.

An overview of wearables in the form of a database sys-
tematically compiling the reliability, validity, and usability, 
amongst other technical information, may assist research-
ers in choosing the optimal solution to perform continuous 
measurement of psychophysiological signals in daily life. 
To date, such a systematic and regularly updated overview 
is lacking. While there have been attempts to provide an 
overview of available wearables relevant for a given research 
field, often in the form of systematic reviews (Iqbal et al., 
2016; Lu et al., 2023; Vijayan et al., 2021), these often pro-
vided no systematic information on the wearables’ reliabil-
ity, validity, or usability. They also tend to have a narrow 
scope on a subset of parameters. For example, in a system-
atic review of ambulatory monitoring devices for measuring 
the cardiovascular activity in community-dwelling adults, 

a list of devices that measured one or more cardiovascular 
parameters was provided, but important information on the 
devices’ broader functionality and any other physiological 
parameters measured was left out (Lu et al., 2023). Fur-
thermore, existing databases are usually not updated itera-
tively. Just as in printed overviews in journal publications, 
this static information can become outdated quickly. This 
problem is particularly salient in view of the ongoing rapid 
expansion of new (versions of) wearables.

Recognizing these limitations, several attempts have been 
made to create online databases that would provide a more 
usable overview of wearable devices for a specific research 
field or for commercial purposes. In an academic context, the 
CHIMERA database (Paredes et al., 2021) has been devel-
oped to facilitate access to and exchange of information on a 
wide range of concepts related to wearable technologies. Its 
main goal was to support a multidisciplinary discourse and 
collaboration between institutes and companies developing 
wearables, and to help researchers select the optimal device 
for their research. However, the database mostly served the 
development of wearables, not their final use, and is now no 
longer available online.

As a second example, Henriksen and colleagues compiled 
a database with 423 consumer-based fitness trackers and 
watches measuring physical activity. Such a database allows 
for easier comparison between the devices included because 
it is possible to filter the data using programming or directly 
in spreadsheet software. However, information that would be 
important for daily-life stress research is missing, including 
information on which stress-related physiological signals 
are measured, the battery life, availability of raw data, and 
measurement reliability and validity. Therefore, direct com-
parison between devices on these aspects is hampered.

A third example of an open access database is the Library 
of Digital Measurement Products, which has gathered valid-
ity and usability evidence of the wearables included. This 
database provides a dynamic overview of both wearable and 
ambient (e.g., Wi-Fi sensing) technologies, but the scope of 
information is still limited. The technical specifications are 
restricted to form factor and wear location, with no further 
details (e.g., available signals) provided. This again makes 
comparison between devices difficult.

There are also overviews of wearables that are not geared 
to researchers but are entirely consumer-oriented. These are 
usually broader in scope and rely predominantly on affiliate 
marketing models where revenue is generated from read-
ers engaging with their reviews and subsequently making 
purchases through provided links. These outlets are better 
at regularly updating their resources and meeting the pace of 
new developments. Most commonly, such online resources 
(e.g., https://​www.​warea​ble.​com/ or https://​www.​techr​adar.​
com/) include reviews of consumer devices, provide an 
option to compare them using relevant filters, and signal 
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ongoing trends and new incoming wearables. An example 
of such an online comparison tool is the Vandrico database, 
which provides information on over 400 devices that can be 
used for industrial decision support and to facilitate work-
place productivity and automatization. However, due to the 
strong focus on the consumer markets, such websites are not 
the optimal resource for researchers, as research-oriented 
ambulatory monitoring devices, as well as more detailed 
device information relevant to researchers, are commonly 
not reported. Additionally, they usually concentrate on the 
technical specifications and the user-based reviews of per-
ceived performance, which cannot be treated as scientific 
evidence of actual performance.

A gap can be seen between the listings of devices in sci-
entific articles, which easily become outdated, and the up-to-
date, online listings, which lack scientific focus. The recently 
started 10-year research program Stress in Action (stress-in-
action.nl) therefore set as one of its goals to create a database 
of wearable ambulatory monitoring devices, including both 
consumer- and research-oriented devices, with a comprehen-
sive overview of aspects relevant for research. Online access 
to the Stress in Action Wearables Database (SiA-WD) will 
be made available at no cost, and it will facilitate the com-
parison between different devices through a set of criteria-
based filters. The SiA-WD will be continuously updated for 
the duration of the Stress in Action project.

The primary focus of the SiA-WD is stress research, and 
the inclusion of the devices is based on the signals related to 
the physiological stress response. Our goal is to achieve an 
overview of information comprehensive enough to optimally 
support stress researchers in selecting the device not only 
regarding technical aspects, but that best facilitates answer-
ing their research question. The SiA-WD aims to support 
all researchers drawing inference based on autonomic stress 
reactivity—from diagnostic efforts around biomarkers of 
psychopathology development (e.g., as central to the work 
of Beauchaine and Gatzke-Kopp (2012) on cardiac control 
and impulsivity or emotion regulation) to those focused on 
efficacy of interventions (e.g., changes in heart rate vari-
ability [HRV] as reflective of autonomic regulation and 
cardiovascular risk in interventions like exercise therapy, in 
accordance with the neurovisceral integration theory (see 
for example de Oliveira Matos et al., 2020). Considering 
the heterogeneous nature of stress research, studies can 
encompass a wide range of methodological prerequisites 
and come with different requirements that a device needs 
to satisfy, including different parameters of interest, which 
in turn require different measurement techniques. There-
fore, the SiA-WD covers a wide range of devices recording 
physiology at different levels of scientific detail support-
ing the diversity inherent to stress research. To illustrate the 
use of the database, we end the paper with two research 
scenarios (focused on threat-challenge and cross-stressor 

adaptation hypotheses) showcasing how research questions 
guide device selection. Moreover, SiA-WD aims to facilitate 
the selection of the most suitable devices for cohort studies 
measuring stress in daily life as well as to provide the best 
candidate devices for subsequent in-depth validation stud-
ies. However, the database can also facilitate researchers 
in selecting wearables for a range of other research topics 
such as sleep, physical activity, and cardiovascular health. 
In short, this database will be a scientific resource on avail-
able wearable devices for ambulatory assessment of physiol-
ogy, and will be open-access, applicable to many different 
research fields, and periodically updated every 6 months for 
the coming 10 years.

In this paper, we begin by outlining the methods used to 
structure and populate the database. We then present the 
database together with its relevant components and pro-
vide two research scenarios demonstrating how researchers 
can use the database to optimally choose wearables given 
their research project and resources. We end by discussing 
the insights gathered while creating the first version of the 
SiA-WD, as well as outlining the future maintenance of the 
database.

Methods

Currently, the SiA Wearables Database is implemented as a 
Microsoft Excel file that is publicly available at https://​osf.​
io/​umgvp/. The excel format ensures easy transfer to other 
formats. The maximal amount of data, even with foreseen 
future growth, is considered manageable in this format. The 
information in the cells of this Excel database was struc-
tured in a way that would enable easy automated search-
ing, sorting, and analyzing the database with programs such 
as Python or R. Most of the time, numerical fields or text 
field from dropdown menus were used to standardize the 
input. Rarely, open text fields were used to allow additional 
clarification. For columns containing multiple components, 
a standardized format was created with semicolons used to 
separate the different components. For example, a device 
with an accelerometer with three axes sampling at 1,000 Hz 
and positioned on the hip is displayed as “1; 3; 1000; hip”; 
whereas a cell of a device without an accelerometer will 
display as “0.”

Below, we first give a description of our approach to 
select wearables to be included in the database (each row 
of the database contains the information of one device), fol-
lowed by the type of information on these devices to include 
in the database (structured into the columns of the database), 
and finally the methods to populate the database with the 
device-specific information (filling in the cells). Since the 
reliability, validity, and usability of a wearable are essential 
aspects for researchers, separate subsections describe our 

https://vandrico.com/wearables.html
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strategies for finding, summarizing, and adding this informa-
tion on the wearables to the database.

Wearables included in the SiA Wearables Database

The starting point to select wearables to be included into the 
database was a list of physiological signals and the param-
eters derived from these signals that have been widely used 
to study the physiological human stress response (Eckberg, 
2003; El-Hamad et al., 2023; Geus & Gevonden, 2024; Geus 
et al., 1995; Grossman & Svebak, 1987; Henley et al., 2018; 
Kim et al., 2018; Klimek et al., 2023; Malm et al., 2004; 
Mukkamala et al., 2015; Neumann & Blanton, 1970; Osei 
et al., 2024; Rahma et al., 2022; Steptoe et al., 2000; Tread-
well et al., 2010; Ward et al., 2012; Wilhelm et al., 2003). 
Based on the vast body of physiological stress research, we 
included electrocardiography (ECG), impedance cardiogra-
phy (ICG), respiration, photoplethysmography (PPG), elec-
trodermal activity (EDA), and blood pressure as our main 
signals; for more details see Table 1.

From these signals, sometimes by combining them, 
physiological parameters can be extracted and reported by 
various wearables. Several parameters typically used in 
physiological stress research are heart rate (HR) (Steptoe 
et al., 2000) and other parameters measuring cardiac per-
formance like the pre-ejection period, stroke volume, and 
cardiac output from the combined ECG and ICG (El-Hamad 
et al., 2023; Henley et al., 2018; Malm et al., 2004; Tread-
well et al., 2010), respiration rate and tidal volume from 
respiratory stretch belts, thoracic impedance, or inductance 
plethysmography (de Geus et al., 1995; Pattyn et al., 2010; 
Wilhelm et al., 2003), skin conductance level (SCL) and 
the frequency of nonspecific skin conductance responses 
(ns.SCR) from the EDA (Klimek et al., 2023; Neumann & 
Blanton, 1970; Rahma et al., 2022), and a number of heart 
rate variability measures like the standard deviation of heart 
period intervals (SDNN), the root mean square of successive 

differences (RMSSD), or high-frequency spectral power 
(HF-HRV) from the ECG or PPG signals (Kim et al., 2018; 
Osei et al., 2024) sometimes derived in combination with 
respiration signals to obtain peak–valley respiratory sinus 
arrhythmia (pv-RSA) (Eckberg, 2003; Grossman & Svebak, 
1987). Lastly, measures like systolic blood pressure (SBP), 
mean arterial pressure (MAP), and diastolic blood pressure 
(DBP) are obtained through oscillometer cuff-based methods 
or by using estimation through pulse transit time assessment 
(Mukkamala et al., 2015; Vrijkotte et al., 2000; Ward et al., 
2012).

Apart from these physiological measures, it has been rec-
ommended to additionally measure posture, physical activ-
ity, and ambient noise level and temperature, as they can 
confound the ambulatory assessment of many of the above 
physiological signals and parameters (De Geus & Gevonden, 
2024), but can also by themselves reveal effects of stress on 
behavioral activation (Giakoumis et al., 2012; O’Brien et al., 
2017; Sano & Picard, 2013). Therefore, when a device co-
records the accelerometer and/or gyroscope signals and skin 
or ambient temperature, this information is also included 
in the SiA-WD. Wearable solutions also exist for a num-
ber of other signals and parameters such as sleep duration 
and quality (Irwin, 2023; Romeijn et al., 2012; Sadeghi 
et al., 2019), ambient light (Akinwande & Kireev, 2019), 
electrooculography (Moon et al., 2023), electromyography 
(Ngo et al., 2022), or core body temperature sensing (Dol-
son et al., 2022). To keep the SiA-WD concise, we did not 
include wearables that only measured these other signals 
but included wearables that co-record them in addition to 
the physiological parameter(s) of interest in stress research.

Currently, there are hundreds of wearable devices that 
measure the physiological signals listed above. A prag-
matic approach was used to select a subset of these devices 
for the first iteration of the SiA-WD database. Based on 
domain knowledge of the authors, we selected a set of 
10 well-known wearables already used in research: the 

Table 1   Basic explanation of the signals commonly used in ambulatory stress research

Signal Details

Electrocardiography (ECG) ECG records the electrical activity of the heart; i.e., the depolarization and repolarization of the heart muscle. 
Commonly, a 12-lead ECG is recorded in clinical settings (McStay, 2019), but for ambulatory recordings, a 
two-lead solution is often used (Krittanawong et al., 2021)

Impedance cardiography (ICG) ICG records the changes in impedance in the thorax, e.g. caused by respiration and fluctuations in blood vol-
ume and flow during contractions of the heart. It can provide information regarding the cardiac and respira-
tory system (and fluid states) (Parry & McFetridge-Durdle, 2006)

Photoplethysmography (PPG) PPG signals are based on absorption and/or reflection of light (green, red, or infrared), commonly measured 
at the wrist (e.g., smartwatches) or finger (e.g., pulse oximeter). The signal can be used to derive cardiac 
measures such as the heart rate and—when using multiple wavelengths—oxygen saturation (Alian & Shelley, 
2014)

Electrodermal activity (EDA) EDA measures the conductance of the skin using two electrodes. EDA captures the activity of the eccrine sweat 
glands and is considered to be a pure measure of the sympathetic nervous system (Boucsein et al., 2012)
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Empatica E4, Empatica EmbracePlus, VU-AMS 5 fs, Oura 
Ring gen3, Hexoskin Proshirt, Mindware Mobile, Novacor 
Diasys 3 plus, Apple Watch Series 6, Garmin vivosmart 
5, and Fitbit charge 5. Adding these first 10 devices to the 
database bootstrapped the iterative process of selecting the 
relevant device information to be included in the database, 
described in more detail below. Subsequently, we used a 
systematic approach to select both often-used and newer 
devices through keyword-based searches, which entailed 
the following:

(1)	 Conducting database searches at PubMed, IEEE 
Xplore, Web of Science, Scopus, and APA PsycInfo 
(through Ebscohost) and ACM Digital Library, with the 
sorting set to “Most recent” while using a search string 
containing keywords on wearable monitors, stress, and 
physiological signals. The physiological keywords 
included those on both signal types and parameters that 
can be derived using these signals. The search string 
was as follows: (photoplethysmography OR electrocar-
diography OR “heart rate” OR “electrodermal activity” 
OR “skin conductance” OR ns.SCR OR “blood pres-

sure” OR electromyography OR “skin temperature” OR 
“stress level” OR “stress detection”) AND (wearable).

(2)	 Examining website articles on newly released weara-
bles via dcrainmaker.com, wareable.com, techradar.
com, vandrico.com, and wired.com/tag/wearables.

(3)	 Consulting colleagues and other researchers who work 
in the field and asking them for nominating wearables, 
especially newer ones.

The list of wearables obtained in this way was filtered by 
the inclusion and exclusion criteria listed in Table 2.

This process led to the first 172 candidate wearables listed 
in the database at https://​osf.​io/​umgvp/. As illustrated in 
Fig. 1, the above procedure will be replicated every 6 months 
for at least the duration of the Stress in Action project, result-
ing in updated versions of candidates for the SiA-WD. Using 
a majority voting procedure, the authors selected a subset of 
54 wearables for the purpose of this paper, yielding version 
1 of the SiA-WD. In selecting this subset, we considered a 
wide variety of devices to obtain a database structure cov-
ering all aspects required for adding various devices (e.g., 
including different wearable types—e.g., watch, ring and 

Table 2   Eligibility criteria for wearable device inclusion in SiA-WD

Inclusion criteria
• The device is available on the market or was recently discontinued but is still widely used in research
• The device measures physiological parameters relevant to stress research
• The device is wearable, mobile, and can be used in daily life
• Specified information on the device and its components is available in English, either on the manufacturer’s website or in the form of a digital 

manual
Exclusion criteria
• The device is in development and prototype phase and not readily available
• The device has a singular focus on measuring gross body movement
• The device is predominantly intended for medical use

Fig. 1   Iterative process of populating the SiA Wearables Database

https://osf.io/umgvp/
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patch—and covering the signals included in the database). 
We then focused on devices that combine various signals 
that have been repeatedly used in stress research and had 
relatively high usability or relatively high levels of estab-
lished reliability/validity.

Device information included in the SiA Wearables 
Database

For all devices, the database columns present relevant 
information on various aspects of the device and its meas-
urement capabilities. A critical piece of information is the 
signals recorded by a device and the calculation of certain 
parameters. Accordingly, we report on both the actual sig-
nals (e.g., the columns of PPG, ECG, BP, Respiration) that 
are recorded and parameters that are provided using these 
signals. For the respiration column, it is important to note 
that a device is considered as measuring respiration signal 
(noted as 1 in the database) if it captures both the rate and 
the depth of breathing continuously. Example techniques 
would include thoracic and/or abdominal piezoresistive 
belts, strain gauge belts, respiratory inductance plethysmog-
raphy, and impedance pneumography. Thus, a wearable only 
extracting respiration rate from the PPG signal would have a 
0 in its respiration signal column, but respiration rate would 
be added as a parameter in the provided parameters col-
umn. Regarding the BP (blood pressure) column, all weara-
bles that produce BP values are considered to measure BP 
and annotated accordingly in the database. The employed 
method is specified; e.g., cuff-based measures such as aus-
cultatory and oscillometry are specified as well as cuffless 
methods based on predictive (machine learning) models.

To decide which other columns to add to the SiA-WD, 
we reviewed the extant literature on relevant criteria for the 
selection of a wearable. Existing recommendations (Byrom 
et al., 2018; Kleckner et al., 2021; Pantelopoulos & Bour-
bakis, 2008, 2010; Polhemus et al., 2020) demonstrate that 
a range of aspects should be considered before selecting a 
wearable. For example, the intended use of a wearable, be it 
clinical, research, or consumer, could be a selection criterion 
when assessing a patient population with a clinical grade 
device being required. Other general information, such as the 
price, is also essential, including one-time-purchase costs 
(e.g., the device and software) as well as additional monthly 
subscriptions (e.g., for application or data server use). Such 
aspects were grouped in the category of general device 
information. All technical information about the device was 
combined in the technical specifications category, including 
battery life or charging method and duration, which deter-
mines whether a participant can measure constantly during 
the study period or if they must charge or swap the device 
(Boateng et al., 2019; Liu & Han, 2022). Additionally, it 
is important to consider the availability of (raw) data and 

the form in which it is available, e.g., at the signal level 
or merely as time series of provided parameters. It is also 
useful to know where the data is stored, whether it is stored 
securely, and what software is required for data processing. 
These, among other data-related aspects, were grouped in 
the data access category (Kleckner et al., 2021; Siboni et al., 
2016). The last set of columns contains information on reli-
ability, validity, and usability, which are important criteria 
for selecting a wearable from a researcher perspective.

After having decided on these categories and their 
aspects, we fine-tuned the structure by actively seeking 
out the information for the first 10 devices in the SiA-WD. 
Based on the issues encountered, we added a number of 
aspects or changed how we reported on them. We extended 
this fine-tuning after consultation with experts on wearables 
research within the Stress in Action consortium. This led to 
the final column structure shown in Table 3.

The database contains a total of 53 columns. The columns 
represent the aspects relating to the five categories (general 
device information, signals, technical specifications, data 
access, reliability, validity, and usability). The last two col-
umns include the SiA expert scores for short- and long-term 
assessment. As a brief illustration of the database, Fig. 2 
shows 11 example columns for six different devices selected 
to represent the different categories of wearables (e.g., more 
research or consumer-oriented).

Retrieving the relevant information for a wearable

To fill the cells of the database (i.e., retrieving the relevant 
information in each column for each of the selected weara-
bles) for the general and technical device specifications as 
well as the information regarding the physiological measure-
ment, we started by using the manufacturer’s website and 
device manuals in English. This meant searching the Web 
using the device name—and if known already, the manufac-
turer name—to find the manufacturer’s website and looking 
for the product specifics’ page and the device manual. In 
addition, we collected data from publications on studies that 
utilized the wearable. When any information on the relevant 
aspects was missing, a standardized email inquiring about 
the missing information was sent to the email address speci-
fied on the manufacturer’s website.

Establishing the validity and reliability of devices 
in the SiA Wearables Database

Besides completing the general device information, sig-
nal, technical specifications, and data access columns, it is 
important to provide researchers with an understanding of 
the device’s measurement accuracy and consistency, that is, 
of whether a device measures what one expects it to measure 
and if it maintains doing so over extended periods of time. 
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Table 3   Device aspects included in the SiA-WD, grouped per category

Category Column Details

General device information Device
Manufacturer
Website
Release date
Market status
Main use
Device costs
Wearable type
Location
Size
Weight

Name of the device
Name of the manufacturer
Link to the webpage of the device
Official release date of the device on the market
Upcoming/current/discontinued
Research/consumer/clinical or their combinations
One-time purchase price (EUR) and additional costs
Type of the device (e.g., watch, CPU + electrodes)
Location at which the device is worn (e.g., wrist, chest)
Device dimensions in millimeters
Device weight in grams

Signals PPG
ECG
ICG
EMG
Respiration
EDA
BP
Accelerometer
Gyroscope
GPS
Skin temp
Other signals

Photoplethysmography
Electrocardiogram
Impedance cardiography
Electromyography
Respiration
Electrodermal activity (galvanic skin response)
Blood pressure
Accelerometer
Gyroscope
Global Positioning System
Skin temperature
All other signals the device can record

Technical specifications Water resistance
Battery life
Charging method
Charging duration
Bio-cueing
Bio-feedback

In terms of depth in meters and time in minutes
Maximum battery life as specified by the manufacturer in hours
Device charger or disposable/rechargeable batteries
Time needed in minutes to fully recharge the battery
Options to cue (e.g., vibration) users based on their physiology
Access users get into their physiology (e.g., via device display)

Data access Raw data available
Provided parameters
Sampling window of parameters
Data transfer method
Compatibility
Required software
Additional software
Internal storage method
Device storage capacity
Server data storage
GDPR compliance
FDA approval/clearance
CE approval/label

If signal-level data can be exported for analysis
The parameters automatically generated by device
Approximate time window around which each parameter is calculated, if avail-

able
All methods of transfer (e.g., Bluetooth, SD-card)
System compatibility of the device (mobile and PC)
Software required to record and/or extract the data
Additional (e.g., analytical) software available
Internal storage availability and the method (e.g., SD-card)
Hours and megabytes of data that can be recorded and stored internally
Data stored on external servers (including their location)
Compliance with the General Data Protection Regulation Act
FDA [Food and Drug Administration] approval or clearance for the device or 

its components
Device has been assessed to meet the European Union (EU) market regulations

Reliability, validity, usability Highest level of validation 
evidence

Number of validity and reliabil-
ity studies reviewed

Studied parameters
General validity and reliability 

synthesis
Number of usability studies 

reviewed
General usability synthesis
Hyperlink to the device RVU 

page

Highest level of validation available (external/internal/no validation)
Number of relevant validity and reliability studies found in the search for a 

given device
List of the parameters included in the reviewed RVU studies
Short synthesis statement of the validity and reliability results of the reviewed 

studies
Number of the relevant usability studies found in the search for a given device
Short synthesis statement of the usability results of the reviewed studies
Hyperlink to the separate RVU page with detailed reliability, validity, usability 

information for the device

Curators’ expert scores SiA short-term usefulness score
SiA long-term usefulness score

Average score based on the perceived usefulness of a device for the future 
short-term SiA studies as assessed by three raters

Average score based on the perceived usefulness of a device for the future 
long-term SiA studies as assessed by three raters
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This can be sufficiently achieved by focusing on convergent 
validity and test–retest reliability (Hopkins, 2000). Conver-
gent validity refers to how well a device’s measurements 
agree with that of a gold standard or other reference device 
(RD), under the same conditions while recording concur-
rently. Test–retest reliability assesses the extent to which the 
device, under similar conditions, produces the same results 
at different points in time (Kottner et al., 2011).

Assessment of convergent validity can be done at the sig-
nal, parameter, and event levels (van Lier et al., 2020). While 
we agree with van Lier and colleagues that wearables should 
ideally be validated at all these three levels, most validation 
papers to date do not report this extensive validation infor-
mation. Furthermore, in nondiagnostic ambulatory moni-
toring, the raw time-series signal itself in general is not the 
focus of interpretation, but the parameters (e.g., HR, SDNN, 
RMSSD) derived from the signals frequently are (van Lier 
et al., 2020). Thus, when presenting validity information, our 
focus will be on convergent validity at the parameter level 
(e.g., to what extent RMSSD of a new wearable complies 
with that from a gold standard) and not, for example, on the 
signal-to-signal cross-correlations. For the current version 
of the database, we did not include studies that investigate a 
wearable’s construct validity (e.g., whether parameters such 

as heart rate indeed differ between baseline and intense exer-
cise) or ability to make predictions using machine learning 
models (e.g., predictive validity of the PPG signals for sub-
jective stress detection).

Establishing usability of devices in the SiA 
Wearables Database

Apart from validity and reliability, the research value of 
a wearable also depends on its usability, as this is a main 
contributor to participant compliance in ambulatory studies. 
High usability can also enhance optimal use by participants 
and thereby increase signal quality and reduce data loss. 
Among participants who initially agree to put on wearable 
monitors for a longitudinal study, the majority may remove it 
before study termination due to getting irritated, uncomfort-
able, overwhelmed, or unwell (Jeffs et al., 2016), and may 
perceive the monitor as impeding their usual activity (Areia 
et al., 2020; Ehmen et al., 2012). Dias and colleagues (2009) 
furthermore asserted that skin reactions may occur with 
certain wearables clenched tightly onto the skin. These can 
result not only in a reduction of quality data but also in ethi-
cal and medical concerns. Thus, to get an understanding of 
usability (including user-friendliness and user acceptance), 

Fig. 2   A section of the SiA-WD showing 11 of the 53 columns for six devices. Note. In these columns, 0 = not available, 1 = available, NP = not 
provided. The SiA-WD itself does not contain the images of the devices, but they are entered in this figure for illustrative purposes
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we identified papers that conducted quantitative or qualita-
tive (e.g., posing systematic questionnaires or open inter-
viewing) research on these aspects.

Compiling the reliability, validity, and usability 
information of devices

The reliability, validity, and usability of the wearables 
were established by a literature search of papers on orig-
inal experimental studies using the wearable (i.e., not 
meta-analyses or reviews) that were published in English 
in peer-reviewed journals or conference proceedings. No 
filtering was performed based on the year of publication. 
As the search strategy was to include all papers that inves-
tigated a given device’s reliability, validity, or usability, the 
search string included terms relevant to all three aspects 
along with the device name: “((Device Name) AND (valid* 
OR reliab* OR compar* OR accur* OR verif* OR usab* 
OR"user experience"OR"user friend*"OR user-friend*).” If 
a device had multiple names for the given version, they were 
all added as a device name using the OR operator.

Papers were only considered to supply the necessary 
validity information when they mentioned the use of a ref-
erence device (RD) in their abstract, such as the following: 
“Measurements were recorded simultaneously using the 
Hexoskin and Polar Team Pro” (Haddad et al., 2020). Fur-
thermore, the RD had to be a proven gold standard (i.e., 
showing greater established precision than the wearable 
being validated), such as the COSMED K5 for respiratory 
volumes or an ambulatory device consistently known to be 
accurate for heart rate, such as the Polar H10 Band. If two 
wearables were merely being compared to one another with-
out a clear rationale for one of them to be considered as 
the golden standard/ground truth, the paper was excluded. 
See Table 4 for a list of eligibility criteria for papers to be 
accepted as providing device-specific information.

Increasing the efficiency of the literature search

For several wearables, the literature review produced a large 
number of hits (e.g., 530 papers for Empatica E4 device). 
Given the rapid expansion of this literature, this challenge 
protracts into the future maintenance of the database. 
We therefore developed a procedure to efficiently extract 

relevant papers, using the ASReview version 1.6.2 (https://​
asrev​iew.​nl/) screening tool, used when there were more 
than 100 papers found for the search for a device. ASRe-
view can greatly reduce the time needed to select the rel-
evant records through a so-called active learning method, in 
which a machine learning model continuously rearranges the 
items based on the decisions made by a researcher regarding 
their relevance (Van De Schoot et al., 2021). The two phases 
of the literature review were based on the SAFE procedure 
(Boetje & Van De Schoot, 2024) and are shown in Fig. 3. 
Further details on the approach can be found in Supplemen-
tary 1.

Data extraction of the RVU (reliability, validity, 
usability) information

For each wearable in the database, detailed information on 
reliability, validity, and usability were extracted manually 
from the papers identified. This information was collated in 
device-specific worksheets referred to as the RVU worksheet 
and were maintained separately from the database. RVU rep-
resents the reliability, validity, and usability information of a 
device, as extracted from the papers identified in the search. 
A direct hyperlink to these device-specific RVU worksheets 
is provided in the database. Reliability and validity data were 
extracted at the level of the provided parameters (e.g., heart 
rate), as papers can focus on different parameters from the 
same device and can report differential validity and reli-
ability performance for these parameters. The information 
extracted for the RVU per device per parameter is listed in 
Table 5. Below, we first explain which data is extracted per 
paper and then clarify how the information of all papers for 
a device (as found in the RVU worksheet) is used by the 
SiA-WD curators to create the synthesis statements in the 
database.

From each paper of a device, first, the overall conclusion 
of the authors who evaluated the device reliability, validity, 
and/or usability were extracted as direct quotations (e.g., 
“Hexoskin was able to correctly measure tidal volume in 
healthy subjects during various tasks […]"by Mannée and 
colleagues (2021)), typically taken from the abstract. This 
column in the RVU worksheet was called the “Authors’ 
conclusion,” referring to the authors who empirically tested 
the device, and not to the curators (the three first coauthors 

Table 4   Eligibility criteria for device-specific studies on validity and reliability

Inclusion criteria Exclusion criteria

• Assessment of parameter-level convergent validity, test–retest reli-
ability, and/or usability

• Assessment of convergent validity
• Peer-reviewed articles and conference proceedings published in 

English

• Studies on construct validity only
• Studies on machine learning-based detection of secondary outcomes 

(e.g., perceived stress)
• Meta-analyses and reviews
• Theses, gray literature, other text that was not peer reviewed

https://asreview.nl/
https://asreview.nl/
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of the current paper). If the test–retest reliability was also 
examined in a study, the authors’ conclusion also included 
the reliability statement per parameter tested. If specified, 
the time interval between two testing points was entered into 
the RVU worksheet as a separate column.

Apart from the authors’ conclusion on convergent validity 
and test–retest reliability, information on the independence 
of the validation work, the reference device used, and the 
scope of conditions and populations considered in the vali-
dation studies were entered (see Table 5 Metadata, Study 
characteristics and methods). We determined the nature of 
a study, external or internal, by reviewing conflict-of-interest 
disclosures. External validations are those conducted inde-
pendently from the device manufacturers and typically show 
less bias than internal studies. In line with the INTERLIVE 

consortium (Johnston et al., 2021; Molina-Garcia et al., 
2022; Mühlen et al., 2021) that proposed recommendations 
for systematic validation of commercial devices, we argue 
that variables including the sample size, type of population, 
duration of data collection, and the testing conditions (i.e., 
tasks and the presence of daily life components) matter in 
determining the trustworthiness of a validity study. The rel-
evant information was located by scanning the full text of 
papers and entered in the RVU worksheets to help future 
researchers using the database assess if a device has been 
sufficiently validated for the tasks, populations, and meas-
urement durations of their interest.

The authors’ conclusion may sometimes lack important 
methodological information on the study. Thus, after review-
ing a given paper, curators wrote a “Validity and reliability 

Fig. 3   Using ASReview to select papers for a detailed review of reliability, validity, and usability of a wearable



Behavior Research Methods (2025) 57:171	 Page 11 of 23  171

summary” and a “Usability summary” whenever applicable. 
The summaries aim to succinctly capture the most important 
methods, findings, and unique sample characteristics in a 
paper. An example “‘Validity and reliability summary” is 
“[...] The 95% Limits of Agreement were − 3.89 to 3.77 
(mean bias 0.06) beats per minute for HR and − 173 to 171 
(mean bias − 1) for IBIs. Results were comparable across all 
subgroups (i.e., different skin type, hair density, age, BMI 
[body mass index] and gender).” An example usability sum-
mary is"87% of participants successfully and consistently 
wore the ring. Gender, age and weight did not influence 
the adherence. 56% were willing to continue wearing the 
ring after the study […].” After considering all information 
extracted from a paper, curators made a final verdict for each 
studied parameter: positive, neutral, or negative (e.g., HR: 
positive; RMSSD: positive; HF-HRV: negative).

Synthesis of reliability, validity, and usability 
studies for the SiA Wearables Database

After completing the review of the RVU studies for a device, 
a synthesis statement for validity and reliability was writ-
ten in the SiA Wearables Database by the curators. This 
synthesis combines all the available validity and reliability 
studies in the device-specific RVU page—and another for 
usability—combining all the usability studies in the device-
specific RVU page. An example excerpt of a general valid-
ity–reliability synthesis is as follows: “Most studies compar-
ing E4 to a reference device (RD) suggest high validity of 

HR under static and dynamic conditions (one study found 
opposite results) and often report HRV parameters as valid 
but only in static conditions, although results seem conclu-
sive only for RMSSD and SDNN […].” An example usabil-
ity synthesis is “Hexoskin is perceived by participants to be 
highly comfortable when used in a laboratory procedure. 
It can be used in those with chronic obstructive pulmonary 
disease […] Use in an ambulatory study of a week, how-
ever, is problematic […].” Such synthesis statements allow 
researchers to review all validation or usability conducted 
for a device. Thus, they can make expedited and system-
atic between-device comparisons in reliability, validity, and 
usability. In addition to the validity–reliability and usability 
syntheses, key information from the RVU worksheet of a 
device was also entered into the SiA-WD. The full account 
of these columns is listed in Table 6.

Wearable selection for applications in stress 
research

After populating the SiA-WD, the curators created a scoring 
system to rank order the wearables based on their usefulness 
for stress research. In this scoring, the curators were strongly 
guided by the perceived usefulness of the wearables for the 
future large-scale cohort studies within the Stress in Action 
project. These cohort studies seek to answer questions on 
both short-term and long-term relationships between physi-
ological, emotional, cognitive, and behavioral responses to 
stress in within-person studies and the predictive value of 

Table 5   Data extraction form for reliability, validity, and usability of each device, gathered in the device-specific information page

Data category Column name Description

Metadata Study citation In APA 7 th edition format
Year of publication YYYY​
Publication journal Journal name

Study characteristics External/internal Was the study performed internally (i.e., by device manufacturers) or 
externally

Population Population type (e.g., elderly)
Sample size Number of participants
Age Mean and SD

Methods (reliability, valid-
ity, and usability of the 
device)

Reference device The gold-standard reference device used for comparison, e.g., standard 
clinical ECG

Number of events Number of tasks included
Included events Types of tasks included
Studied parameters All the parameters studied (e.g., HRV and SCL)
Time between test–retest Time after which authors made a second measurement with the device 

under same circumstances to calculate internal consistency
Findings and conclusions Authors’ conclusion Excerpt of authors’ (who empirically assessed the device) conclusion

Validity and reliability summary Summary of validity/reliability findings written by the curators
Usability summary Summary of usability findings written by the curators
Final verdict (negative/neutral/positive) Curator’s final verdict per physiological parameter based on all available 

RVU information



	 Behavior Research Methods (2025) 57:171171  Page 12 of 23

these responses for disease outcomes in between-person 
studies. Within-person studies require long-term assessment 
across weeks or months of at least one physiological indica-
tor of stress in the same participant, whereas between-person 
studies to predict disease require more intensive measure-
ments of physiological stress systems—i.e., measuring vari-
ous signals and output parameters—for one to three full 24-h 
recordings, possibly on selected days of the week. While 
a high level of validity and reliability is always essential 
independent of wear time, high levels of usability become 
increasingly more important for longer wear times. Accord-
ingly, two separate scores were given by the three curators 

to each device reflecting its perceived research usefulness 
for both short (i.e., approximately 2 days) and long (i.e., at 
least 2 weeks) measurement durations.

Since scoring the devices is an inherently subjective 
process, a set of criteria had to be outlined to achieve 
standardization of the rating by the three curators. The cri-
teria list came from the columns in the database (e.g., raw 
data availability, validity, usability). Separate scoring cri-
teria were used for a typical short-term (approximately 48 
h) and long-term (2 + weeks) ambulatory study. The final-
ized scoring criteria per term of use is listed in Table 7. 
Blinded to each other’s scores, each curator scored each 

Table 6   Reliability, validity, and usability information on the wearable in SiA-WD

Column name Entry type Explanation

Highest level of validation No validation/inter-
nal/external

External validation ranks higher than an internal one

Number of validity–reliability studies reviewed Numeric Number of validity and/or reliability studies resulting from the search
Studied parameters List All the parameters present in all the studies
General validity and reliability synthesis Text A comprehensive but short written overview of all the different study 

results. This includes both validity and reliability information
Number of usability studies Numeric Number of usability studies resulting from the search
General usability synthesis Text A condensed overview of the device usability based on the reviewed 

studies. This includes not only user experience but also aspects 
such as adherence

Table 7   List of scoring criteria ordered by their importance for short-term and long-term studies

Short-term importance of criteria Long-term importance of criteria

• GDPR approval High • GDPR approval High
• CE approval High • CE approval High
• All reliability– validity criteria High • Price High
• Number and type of different signals that can be 

measured by the device (e.g., PPG, ECG, acceler-
ometer)

High • Number of different physiological parameters that can 
be measured by the device (e.g., HR, Skin tempera-
ture)

High

• Raw data availability High • Wearable type, location, and weight and size High
• Provided parameters Medium • Usability outcome (if available) High
• Parameter sampling window Medium • Battery life High
• Price Medium • All validity-reliability criteria High/medium
• Wearable type, location, and weight and size Medium • Parameter sampling window High/medium
• Usability outcome (if available) Medium • Data storage capacity High/medium
• Data storage capacity Medium/low • Data transfer method Medium
• Data transfer method Medium/low • Data Storage Method Medium
• Data storage method Medium/low • Charging duration Medium
• Battery life Low • Charging method Medium
• Charging duration Low • Raw data availability Medium
• Charging method Low • Data Transfer Compatibility Medium
• FDA approval Low • Waterproof Medium/low
• Waterproof Low • Bio-cueing Medium/low
• Bio-cueing Low • Biofeedback Medium/ow
• Biofeedback Low • FDA approval  Low
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device on a scale of 1 (least optimal) to 10 (most optimal) 
for both short-term and long-term use. The scores of the 
three curators were averaged into the final expert scores 
for short- and long-term studies. These were included in 
the database. No score was entered for devices that had 
been on the market for less than 8 months. This avoids 
unfair scoring of devices which were just released on the 
market, for which little to no external validation research 
will be available.

Many devices regularly produce updated versions. This 
is especially true for consumer devices which are often 
upgraded for commercial purposes with the focus on aes-
thetics or usability changes. For newer versions that did not 
introduce new signals or a different form factor, we used 
the information on the previous version of the same line of 
product to guide the scoring. For example, studies on the 
Fitbit Charge 4 could guide the scoring for Fitbit Charge 
5, but the Fitbit Sense cannot be used in the scoring of the 
Fitbit Charge 5. It was assumed that in the absence of large 
changes to its hardware or software (although this was a sub-
jective judgement of the curators), the validity and reliability 
findings on the previous version of a given device would be 
indicative of the validity and reliability of the newer version.

Results

Descriptives of wearables included in the database

General device information

The first version of the database contains 54 devices that 
were primarily intended for consumers (35), followed by 
research (18) and clinical use (10), including nine devices 
intended for multiple user fields (e.g., research and clini-
cal). The average price of a wearable is €1,013 with sub-
stantial differences in device costs (SD = €1,378) caused by 
a big gap between prices of consumer and research/clinical 
devices. Wearables intended for consumers cost on average 
€347 (SD = €175), whereas prices of clinical- and research-
oriented wearables average out to €1,489 (SD = €1,403) 
and €2,082 (SD = €1,713), respectively. For six wearables, 
all intended for clinical settings, the price is only available 
on request. Moreover, 11 out of 54 devices have additional 
software or subscription costs. The most common type of 
wearables included in the database is a watch (40.7%) fol-
lowed by a ring (16.7%) and CPU with external electrodes 
(16.7%). Other form factors were straps—sometimes com-
bined with a CPU—worn on the upper arm, wrist, or with 
flexible positioning possibilities. The location where most 
wearables are worn is the wrist (44.4%), followed by finger 
(18.5%) and chest (18.5%).

Signals

Regarding the physiological signals, those most often meas-
ured by the devices were PPG (64.8%), ECG (50.0%), skin 
temperature (35.2%), blood oxygen saturation level (SpO2) 
(31.5%), and EDA (31.5%). The respiration signal, derived 
from either ICG or respiration belts, is measured by 5.6% of 
the devices. For some physiological parameters it is neces-
sary to record multiple physiological signals. For example, 
to obtain peak–valley RSA, both an ECG and a respiration 
signal are needed. Among devices, 79.6% are equipped with 
sensors for multiple physiological signals. All three devices 
which record ICG measure ECG simultaneously.

Of the co-recorded signals that can account for confound-
ing by posture, physical activity, and ambient noise level and 
temperature, accelerometry was the most common (90.7% 
of the devices). A further 20.4% of devices also offered GPS 
functionality, through a built-in sensor in the device itself. 
A total of 37.0% of the wearables included a gyroscope. 
Among other signals identified, the most common one was 
SpO2, with 31.5% of devices providing this option, followed 
by ambient light detection in 25.9% of the devices.

Technical specifications

A total of 83.3% of devices were water-resistant. The average 
battery life was 261 h for continuously measuring devices, 
ranging from 10 h for the BIOPAC Research Ring and Plux 
respiBAN BLE to as long as 30 days for the Withings Scan-
Watch 2. The majority (83.3%) of these wearables have a 
battery life of at least 24 h.

Data access

All devices except two have internal storage capacity, with 
options to transfer the data either through Bluetooth (92.6% 
of the wearables), via a (micro-)SD card (7.5%) and/or using 
a cable (16.7%). Only the BIOPAC Research Ring and Cosi-
nuss c-med° alpha do not have any internal storage capac-
ity and utilize direct Bluetooth transfer of the data to the 
manufacturer's application, therefore requiring continuous 
connection between the wearable and the phone.

Regarding the data output, 35.2% of the devices provide 
raw data, all intended for clinical or research purposes. 
Among the consumer-oriented parameters provided by 
the devices, the most common ones are heart rate (92.6%), 
sleep staging (75.0%), and physical activity scores (64.8%). 
“Stress” as a separate parameter is provided by 33.3% of the 
devices, commonly referred to as stress management score. 
A parameter that represents essentially the same might be 
named differently by manufacturers. To illustrate this issue, 
physical activity-related scores fall under the following 
names: activity counts, hourly activity, activity score, active 
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time, active zone minutes, exercise tracking, activity detec-
tion, and simply activity. Even after contacting manufactur-
ers for more detailed information on the provided parame-
ters, we did not obtain the information needed to standardize 
the terminology. We, therefore, opted to include the names 
of parameters provided by the manufacturer.

Missing data

Twenty-four columns contain all the required information 
about all devices. However, not all information is provided 
by the manufacturers at all instances, even after request-
ing this information through email. This resulted in 284 NP 
(i.e., not provided by the manufacturer) values in the data-
base. On average, columns contain 5.9 NP values, and most 
frequently, the sampling rates of consumer wearables were 
not provided. After missing sampling rates, the column of 
the Device storage capacity contains the highest number 
of NPs (49). For many devices (22), details on their water 
resistance level are missing, and if provided, lacking stand-
ardization between manufacturers in the way this informa-
tion is reported.

Reliability, validity, and usability

Of all devices combined, there were 96 papers in the data-
base regarding reliability and validity, and 18 for usability. 
The Polar H10 had the highest number of relevant reliability 
and validity papers (17), and the Empatica E4 had the most 
usability papers (5). For 31 devices, no reliability, validity, 
and usability papers were identified. Twenty-two of the 54 
devices had external validation, and three devices had only 
internal validation.

Curators’ expert scores

Inter-rater reliability of the perceived usefulness of the 
wearables for the future large-scale cohort studies within 
the SiA project was calculated between all curators. The 
inter-rater agreement between each pair of curators was cal-
culated via Pearson’s correlation. Using the psych package 
in RStudio, the two-way random effects intraclass coeffi-
cient ICC (2, k) was also calculated to represent the absolute 
agreement between all three curators’ scores (Koo & Li, 
2016). Three out of the 54 devices in the database were not 
scored, as 8 months have not passed since their release date. 
The short-term and long-term usefulness scores were pro-
vided for 51 devices. The average ICC for long-term useful-
ness across three curators was 0.85, 95% CI = [0.76, 0.91], 
F(50, 100) = 6.6, p < 0.001. For the long-term usefulness 
scores, Pearson’s r was 0.58 between rater 1 (Saygin) and 2 
(Schoenmakers), 0.72 between rater 1 and 3 (Sikora), and 
0.68 between rater 2 and 3. The average ICC for short-term 

usefulness across three curators was 0.87, 95% CI = [0.78, 
0.92], F(50, 100) = 8.0, p < 0.001. For short-term useful-
ness scores, Pearson’s r between curator 1 and 2 was 0.59, 
between curator 1 and 3 was 0.76, and between 2 and 3 was 
0.77. Statistically significant and good (Koo & Li, 2016) 
absolute agreement was present across curators in both the 
short- and long-term usefulness scores of wearables.

The device with the highest short-term usefulness score 
was the VU-AMS 5 fs (8.7 out 10), followed by movisens 
EcgMove 4 (8.0), a tie between Hexoskin ProShirt and VU-
AMS Core (7.7), and MindWare Mobile, Plux BioSignal kit, 
and Polar H10 (all three scoring 7.0). Devices with a mod-
erately high score included the ambulatory blood pressure 
monitors Novacor Diasys 3 plus (6.3) and Spacelabs OnTrak 
(6.7), as well as BioHarness 3.0 (6.5) and Equivital Eq. 02 
+ Lifemonitor (6.8). All other devices scored less than 6 on 
short-term usefulness. The highest long-term use score of 
8.0 was achieved by Empatica EmbracePlus and Fitbit Sense 
2. They were followed by Polar H10 and Garmin vivosmart 
4 (7.5), Fitbit Sense with 7.3, Oura Ring gen3 with 7.3, 
and Garmin vivosmart 5 with 7.0. There were a number 
of devices that had moderately high scores for long-term 
use, including Garmin vivoactive 5, WHOOP 3.0, Withings 
Scanwatch (all with 6.8), Empatica E4 (6.7), Fitbit Charge 5 
(6.7), Corsano Cardiowatch 287–2 (6.7), WHOOP 4.0 (6.7), 
Google Pixel Watch 2 (6.3), Garmin vivoactive 4 (6.3), Cor-
sano Cardiowatch 287–1 (6.0), Apple Watch Series 8 (6.0), 
and NOWATCH (6.0).

Illustration of the use of the SiA‑WD in two different 
stress research scenarios

Depending on the aim of a given ambulatory study, human 
physiology can be recorded for durations ranging from sev-
eral hours to years. In addition, the type and combination 
of parameters, along with the underlying signals included 
in different ambulatory studies, vary widely. Numerous 
other criteria including raw data extraction, availability of 
provided parameters, and costs can also be fundamental 
decision points. Although many wearables are available for 
research, they may be unsuitable after considering the study 
plan, duration, resources, hypotheses, and theoretical frame-
work. Our Stress in Action Wearables Database provides 
detailed information to assist in these decisions. Below, we 
present two different research scenarios, one for a short-
term (Research Scenario A) and one for a long-term study 
scenario (Research Scenario B) on the activity of physiologi-
cal stress systems in daily life. We first illustrate the steps 
one might take in using the SiA-WD to get to a shortlist of 
wearables that fulfill the study requirements and then review 
which information in the overall database as well as the RVU 
worksheets might be used to make a final decision. Nonethe-
less, researchers might also benefit from using the database 
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in a more pragmatic manner, for instance, to check how a 
device they already have, or a recommended one, performs 
in comparison to other wearables. Therefore, device-based 
comparison is facilitated by the online filtering tool, but a 
more structured approach to device selection, as illustrated 
by the scenarios below, is recommended to best support the 
study purpose and its design characteristics.

Research Scenario A: Short‑term study 
of how cardiovascular threat‑challenge response patterns 
impact health outcomes

Research Team A is interested in the impact of perceived 
threat and challenge in response to daily life stressors on 
cardiovascular health outcomes. Informed by the threat-
challenge hypothesis (Blascovich & Tomaka, 1996; Tomaka 
et al., 1993), the team seeks to continuously record left-
ventricular contractility (indexed by the pre-ejection period, 
PEP), cardiac output (CO), and total peripheral resistance 
(Wormwood et al., 2019). According to this hypothesis, 
a threat should be characterized by a dominant vascular 
response (increased total peripheral resistance), whereas 
challenge generates a cardiac response (shortened pre-
ejection period, increased cardiac output). Thus, ambula-
tory impedance cardiography plus electrocardiography are 
required in conjunction with a cuff-based ambulatory blood 
pressure monitor. The main goal for this research scenario 
is disease prediction, and so it has a largely between-sub-
ject design. Specifically, the researchers want to investigate 
whether the effect of the differences of trait anxiety (as 
assessed by a validated questionnaire) on the health out-
come of cardiometabolic/immunologic “allostatic load” risk 
profile (as assessed by future blood sampling) (Robertson 
et al., 2017; Seeman et al., 2001) is mediated by a predomi-
nance of cardiovascular threat reactivity in daily life. They 
aim to measure perceived threat and challenge via mobile 
ecological momentary assessment. As a secondary research 
question, Team A is interested in whether physiological 
levels measured during sleep, in particular of cardiac vagal 
control, are linked to threat or challenge reactivity in daily 
life (Mendes et al., 2001). To index cardiac vagal control, 
they seek to use respiratory sinus arrhythmia (de Geus & 
Gevonden, 2024).

A total of 110 participants with moderate generalized 
anxiety disorder are scheduled to be measured within 30 
weeks. Each participant’s recording will take place over 
2 days within the same week: one working and one leisure 
day, including sleep. As the participants will return to the 
lab in between their recording days for device replacement, 
a minimum battery life of 24 h is needed. High reliabil-
ity and validity of the physiological measurements under 
naturalistic conditions are considered crucial. They have a 
budget of €14,000 for purchasing devices. The researchers 

have a strong preference for retrieving raw data to derive the 
parameters themselves. See Table 8 for an overview of the 
requirements for Research Scenario A.

After opening the SiA Wearables Database tool to find 
suitable devices, they needed to decide between selecting 
either the signals (e.g., PPG or ECG, ICG, and BP) or the 
parameters provided by device (e.g., CO, PEP, BP, RSA, 
RR) for the first stage of filtering. The researchers opted for 
providing a list of signals they require a device to have, as 
they wanted to extract the needed parameters—CO, total 
peripheral resistance, PEP, RSA—using their own data-
analytic software rather than obtaining them directly from 
the device. In this case, the device would need to have ECG 
and ICG and, if possible with the same device, also the abil-
ity for BP recording. Because thorax impedance signals also 
provide a respiration proxy signal (dZ), it can be used in 
combination with the ECG to calculate peak–valley RSA. 
Therefore, the researchers do not specify respiration as an 
additional required signal, but select devices that simultane-
ously record ICG, ECG, and BP.

The SiA-WD contained no devices that can simultane-
ously measure the ICG, ECG, and BP. The researchers, 
therefore, searched the database anew, now looking for a 
combination of two devices, one measuring ECG/ICG and 
one measuring cuff-based ambulatory BP. Their budget 
allows them to buy a minimum of two of the same devices 
that record the ICG and ECG and two that record blood pres-
sure. This aligns with the logistic capacity and time frame of 
the study (four people per week to be equipped for 2 days). 
Consequently, ICG and ECG as required signals, 24 as the 
minimum battery life, and €6,000 as the maximum device 
cost are entered (€2,000 are set apart for BP monitor costs 
to be used in the second search). As it will be a short-term 
study, they decide against filtering based on the form of the 
wearable (e.g., not restricting to wrist placement). Choosing 
to view their results sorted by the devices’ SiA-expert score 
on short-term usefulness column (alternative sorting options 

Table 8   Description of the requirements for Research Scenario A

Requirements for Research Scenario A

• Signals Raw ICG and ECG 
data (optional res-
piration signal)

• Parameters PEP, RSA (optional 
RR), HR, BP, CO, 
TPR

• Participants 110 anxiety patients
• Project duration 30 weeks
• Assessment duration per participant 2 days within a week
• Maximal costs per device €6,000
• Minimum battery life 24 h
• Validity & reliability High
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are available such as based on the number of validity stud-
ies or device cost), they obtain the following three devices, 
listed from the one highest to lowest scoring: VU-AMS 5 fs, 
MindWare Mobile, VU-AMS Core.

Next, the researchers examine the raw data availability 
of these three devices in the database. They all allow raw 
data extraction. Then, each device’s overall reliability–valid-
ity conclusions are read, and the device-specific RVU sheet 
(consisting of all reliability, validity, usability papers of a 
device and detailed information) is investigated to under-
stand if the parameters of interest were validated for a given 
device, along with the specifics of such validation. As they 
see VU-AMS 5 fs was already shown to be valid for all 
parameters of interest, is CE-approved, and has a compar-
atively lower cost including the data analysis software, it 
becomes the device of choice. They then perform a search 
for only ambulatory blood pressure monitors that are in-
market, entering “BP” to the signal required without further 
filtering and obtain Novacor Diasys 3 plus, Garmin Index 
BPM, and SpaceLabs On Trak. As the Garmin blood pres-
sure monitor is the only one matching the budget criteria, 
is FDA-cleared, and has some validation, they decided on 
using the Garmin Index BPM in conjunction with the VU-
AMS 5 fs.

Research Scenario B: A long‑term study on the relations 
between physical activity and physiological 
stress‑reactivity

Research Team B is interested in testing the cross-stressor 
adaptation hypothesis of physical activity in the daily life 
context. The cross-stressor adaptation hypothesis posits 
that regular exercise leads to adaptations in stress response 
systems that leads to reduced physiological reactivity in 
response to psychological stressors (von Haaren et al., 2016). 
Current empirical evidence has been mixed, and no stud-
ies have conducted a prolonged assessment of the relations 
between physical activity and physiological stress-reactivity 
in daily life (Van Der Mee et al., 2023). The researchers 
are mainly interested in the effects of moderate-to-vigorous 
activity periods, which typically occur with low frequency 
in a general population, on stress reactivity. Regular exercis-
ers are expected to harvest a larger benefit in terms of more 
strongly attenuated stress-reactivity after a period of mod-
erate-to-vigorous activity than non-exercisers. In short, they 
seek to record physical activity and physiological reactivity 
across a longer period of 3 months in a sample of at least 300 
participants, with the focus on the within-subject relations 
between physical activity and physiological stress-reactivity.

The default method to assess stress levels in daily life 
is ecological momentary assessment involving repeated 
self-reports by smartphone beeping, which is burden-
some. Alternatively, this stress response can be measured 

via physiological reactivity after accounting for periods of 
activity. Accordingly, the researchers use the “additional 
heart rate” approach (Brouwer et al., 2018). In this approach, 
increases in heart rate are flagged only when co-recorded 
physical activity indicate that the heart rate response was not 
simply part of homeostatic regulation in response to changed 
hemodynamic and metabolic demands (Verkuil et al., 2016).

Therefore, they require a wearable that can make pro-
longed recordings of physical activity (measured by an 
accelerometer) and measures of physiological arousal, like 
heart rate and electrodermal activity (optionally HRV). 
Although the reliability and validity of the physiological 
measurements are important, it is crucial to have many 
recording days within a single person. As participants will 
be tracked over 3 months, they only allow wearables in the 
form of rings and smartwatches to increase adherence. The 
wearable should give a minute-by-minute index for physi-
cal activity (e.g., vector magnitude or the number of steps) 
and for general physiological arousal (5-min epoch with an 
increase in HR or ns.SCR of more than 20% compared to the 
previous epoch). See Table 9 for an overview of the require-
ments for Research Scenario B. The researchers filter based 
on the parameters provided by the device. Considering that 
combining increased HR and increased ns.SCR may improve 
estimation of the physiological arousal level, they opt for 
selecting devices that can readily provide both parameters 
for at most 5-min time windows along with physical activ-
ity-related parameters. As the researchers think having the 
participants charge their wearable every 2 days is a reason-
able frequency, minimum battery life is set at 48 h, and the 
resulting devices were sorted based on their SiA long-term 
usefulness scores, from highest to lowest scoring, result-
ing in the following: Fitbit Sense 2 (8 points), Empatica 
EmbracePlus (8), Fitbit Charge 5 (6.7), and NOWATCH (6). 
All devices provide distance, steps, and active zone minutes 
parameters, which can be used to index physical activity. 
The details of the SiA-WD show the Fitbit Charge 5 does 
not provide continuous but manually initiated scan-based 
values, which does not suit the requirements and is therefore 

Table 9   Description of the requirements for Research Scenario B

Requirements for Research Scenario B

• Signals PPG or ECG, and accelerometer
• Parameters HR, ns.SCR, and physical activity-related 

parameters (optional HRV)—provided 
at least every 5 min

• Participants  ≥ 300
• Assessment duration 

per participant
3 months

• Minimum battery life 48 h
• Usability High
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excluded. Similarly, NOWATCH measures EDA but does 
not provide parameters derived from the signal. Empatica 
EmbracePlus has one validity study, which only examined 
the blood oxygen saturation levels. Fitbit Sense 2 lacks reli-
ability, validity, or usability studies. When checking the gen-
eral validity and reliability synthesis column, it is seen that 
although Sense 2 does not have validation studies, its pre-
decessor device Fitbit Sense’s HR was found to have overall 
acceptable validity under both static and active conditions, 
and its skin conductance level had a significant positive cor-
relation with the reference device parameters. Because Fitbit 
Sense 2 is defined as a successor of this previous release, 
the researchers assume the latest version to perform up to 
similar validity standards as the previous version. As the 
study will be carried out in Europe, they check the GDPR 
column to make sure the device’s way of storing data meets 
the data protection regulations required by law and choose 
Fitbit Sense 2 for the study.

Discussion

Selecting the right wearable for stress research can be chal-
lenging in face of the large number of physiological weara-
bles on the market paired with the lack of a comprehensive, 
systematic, and iteratively updated overview of the relevant 
wearable characteristics (Connelly et al., 2021; Dobson 
et al., 2023). The Stress in Action Wearables Database (SiA-
WD) provides such an overview, enabling stress research-
ers to compare a host of wearable devices on a number of 
research-informed characteristics with detail. Compared 
to other overviews of wearable devices such as systematic 
reviews and databases (Iqbal et al., 2016; Lu et al., 2023; 
Paredes et al., 2021; Vijayan et al., 2021), the SiA-WD has 
several major advantages. First, the database is comprehen-
sive regarding the information on general device informa-
tion, technical specifications, and data access. Second, the 
technical, practical, and importantly, physiological details 
were obtained with a systematic review including the relia-
bility and validity of the measured physiological parameters. 
This is—to the best of our knowledge—a first in the field. 
Third, where other overviews may have a specific focus, 
such as the focus on cardiovascular parameters by Lu and 
colleagues (2023), the SiA-WD has a broad scope of signals 
and devices relevant for physiological research focusing on 
autonomic nervous activity. Thus, the database applies to a 
relatively larger audience of researchers in the field. Fourth, 
this systematic search included a usability assessment also 
with a systematic search of studies that might have inves-
tigated its user-friendliness. The curators’ summary state-
ments on reliability, validity, and usability papers make an 
easy and time-efficient selection of devices possible, while 
the device-specific reliability, validity, and usability (RVU 

worksheets) allow access to the evidence supporting these 
summary statements. And fifth, where other overviews get 
outdated, the SiA Wearables Database will be consistently 
extended and updated.

Challenges encountered

Populating the database was not without its challenges. As 
some manufacturers did not provide the required informa-
tion, they were sent a standardized email requesting these 
details. Most often, information on the particulars of physio-
logical sensors, a comprehensive list of parameters provided 
by the device, and the sampling windows of parameters (e.g., 
the number of seconds over which each heart rate is calcu-
lated) were lacking. In the case that no response addressing 
the question(s) was received, information fields had to be 
filled with NP (not provided by the manufacturer). For exam-
ple, columns specifying the signals’ sampling frequency or 
the device storage capacity contained frequent NPs, because 
this information could not be retrieved. Another challenge 
in populating the database concerns the lack of clear defini-
tions of the output parameters of the wearable systems. For 
example, heart rate can be calculated continuously per 5-min 
intervals, per day, per activity, and so on, but the used time 
scale was not always available for data extraction. Moreo-
ver, upon filling in the database, it became apparent that 
researchers conducting long-term ambulatory studies may 
use external applications as a solution, as it facilitates more 
detailed data extraction and storing of the recorded signals 
and parameters; e.g., the Heart Rate Variability Logger 
application. Finally, conceptually similar parameters go by 
many different names, as exemplified by the heterogeneous 
terminology used for physical activity.

The SiA Wearables Database version 1.0 includes more 
devices that are consumer-grade rather than research-grade 
devices. This probably explains why more than half of the 
wearable systems do not provide raw data access and instead 
focus on providing parameters such as HR, sleep stages, 
stress scores, and activity values. Wristwatch was the most 
used wearable type, and ECG and PPG were the signals most 
often recorded, with most devices also co-recording acceler-
ometry. A watch is a convenient and generally accepted way 
of wearing a device, and the integration of PPG sensors and 
accelerometers can provide parameters (e.g., HR values and 
activity scores) that are informative for a broad audience. 
Due to its relatively lower burden (for example, as com-
pared to a vest), it also enables higher adherence and comfort 
for populations with higher risk factors. Consumer-grade 
wearables are substantially cheaper and more user-friendly 
than research-grade wearables. Compared to research-grade 
wearables, consumer-based wearables are therefore much 
more suitable for research questions that need to assess many 
people and/or for an extended period.
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However, many parameters produced by consumer 
devices lack validation, as shown by the overview of the 
validity and reliability syntheses. In terms of established 
validity and reliability, research-grade wearables clearly out-
perform consumer wearables. Research-grade devices also 
more often provide raw data and record multiple different 
signals, such as continuous ECG and ICG. A full continuous 
ECG is rarely recorded in consumer wearables, and those 
that record ECG do so by having the user manually initiate 
a short ECG recording by placement of the hand on top of 
the device (e.g., to the side of a watch). Furthermore, the 
participants are typically asked to refrain from any physical 
movement which might create stress because of multiple 
failed recordings (Seshadri et al., 2020). A research-grade 
device in a low-burden wearable format such a wristwatch 
could have high utility for research interested in assessing 
autonomic and physical activity parameters for more fine-
tuned windows and over longer periods of time.

The results highlighted the lack of both validation and 
usability research on existing wearables, as well as the need 
for a more systematic approach to such studies, especially 
when one considers the high tempo with which devices are 
discontinued and introduced to the market. Although sys-
tematic validation studies are performed for some wearables, 
the reported statistics vary widely (e.g., Bland–Altman plots, 
intra-class correlations, linear regression, half-split reliabil-
ity), which complicates comparisons between studies and 
across devices. This constitutes a challenge for both the 
curators and users of the database in making a fine-tuned 
comparison between those devices that are deemed valid. 
We hope that the gaps in validation studies identified by the 
SiA Wearables Database will create incentives for studies 
assessing the reliability, validity, and usability of wearable 
technology in a more consistent manner with regard to study 
design and statistical reporting (Keogh et al., 2021; Liang 
et al., 2018; Shei et al., 2022; van Lier et al., 2020).

The two selected research scenarios where the SiA Wear-
ables Database is used illustrate the need for such a data-
base. There is rarely a clear “winner” device that fits a study 
design. Instead, the optimal device choice depends on a con-
sideration of many aspects of the research study, including 
the theoretical relevance of the physiological parameters to 
be measured, the total number of participants, the duration 
of the sampling, the burden threshold that can be tolerated 
by the participants, and financial and logistical constraints 
of the research team. Filtering by the relevant columns in the 
SiA-WD based on their study requirements should provide 
researchers with a good first selection of wearables. After-
wards, they can narrow it down to the optimal wearable by 
further inspection of details, for example that on validity.

The two presented scenarios showed substantially differ-
ent research goals, one of obtaining detailed information 
on the daily operation of physiological systems during a 

short measurement to predict future disease risk, the other 
to obtain insight into the temporal dynamics of physical 
activity, affect, and physiological arousal over a prolonged 
period within individuals. The suitability of a wearable for 
these typical short-term and long-term scenarios was added 
as a separate score to the SiA-WD to assist researchers in 
selecting the potential wearables for their research. Interme-
diate research scenarios exist that may require researchers to 
carefully formulate what is of importance.

Limitations of the SiA‑WD

A major limitation of the current version 1.0 of the SiA-
WD is that it contains a modest selection of 54 devices, 
whereas over 172 devices were identified by our search. The 
54 devices were selected for version 1.0 based on repeated 
use of a device in past stress research, input obtained from 
experts within the SiA consortium, and our aim to cover 
different types of devices (i.e., focusing on signals, wearable 
type, and consumer, research and clinical grade devices). 
While we succeeded in building a structure suitable for 
the wide variety of devices on the market, this first version 
may suffer from selection bias. The SiA-WD version 1.0 
only includes wearables measuring autonomic nervous sys-
tem reactivity, and no wearables capturing central nervous 
system activity. The gradual expansion of the database in 
the upcoming renewal cycles will at some point add these 
devices too and gradually reduce other selection biases. The 
continued renewal also ensures that we can pick up new 
promising devices that move from prototype to product in 
this rapidly moving field of technology and highlight the 
need for their subsequent validation, promoting the use of 
new technology. For example, we are especially awaiting 
to include in the database noninvasive wearables assessing 
continuous blood cortisol levels which may interest many 
stress and health researchers (Parlak et al., 2018).

It is not untypical in ambulatory research to extract the 
raw data recorded by the wearable and subsequently conduct 
preprocessing and parameter extraction in an open-access 
third-party platform such as Python or R. Upon the extrac-
tion of raw data, one might either use a more generalist pack-
age such as neurokit2 that can be implemented to data from 
many wearables (Makowski et al., 2021) or utilize a more 
streamlined toolkit that was built for particular wearables, 
like the Wearables International repository. To facilitate this, 
we report in the SiA-WD whether the wearables enable raw 
data extraction as specified by the manufacturer.

Another limitation is that the SiA-WD is now main-
tained by a relatively modest-sized team. Not all candi-
date devices can be annotated for the database at once, as 
substantial work is involved per device (the time invest-
ment ranges from 0.5 to 5 workdays). Along with the rapid 
expansion of the total pool of wearables, this means that 

https://www.github.com/PCdLf/wearables_international
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the curators may not keep up and will need to prioritize 
which devices to annotate first. Basic rules for this prior-
itization are that a device, listed in no order of importance, 
(1) has a novel or attractive feature (e.g., new way to moni-
tor a widely used physiological parameter, large exten-
sion of battery life), (2) combines multiple physiological 
signals relevant to stress research (e.g., a device meas-
ures continuous ECG, BP, and EDA), (3) has the potential 
to substantially decrease participant burden (e.g., a ring 
rather than a patch), or (4) has been repeatedly used for 
peer-reviewed stress research and is still in-market. Also, 
the SiA-WD will maintain a clear focus on noninvasive 
wearables, therefore excluding ingestibles, implants, and 
domotic sensors. However, just like through the use of 
ASReview, we will stay open to implementing technolo-
gies that could benefit the maintenance of the database. 
For example, with the continuous improvements in the 
field of artificial intelligence (AI), large language models 
(LLMs) could potentially be implemented in the future 
to synthesize the RVU information. Nonetheless, with 
the variety of tasks involved in populating the SiA-WD, 
we see the human-in-the-loop principle as central to the 
decision-making process. We believe that in this way, the 
sustainability of the database will not be dependent on a 
given technology, and as a result, SiA-WD will be more 
responsive to change, including adoption of new and ben-
eficial tools.

Conclusion

The Stress in Action Wearables Database (SiA-WD) is a 
comprehensive and well-sustained database of physiological 
wearable devices that have application potential in behavio-
ral research, in particular stress research. It provides a large 
amount of information that a researcher would look for such 
as the general device information, recorded signals, techni-
cal specifications and data access, combined with a system-
atic reliability, validity, and usability review of the avail-
able literature on a device. The SiA-WD will be iteratively 
expanded and the information, including that for devices 
already existing in the database, updated for a period of at 
least 10 years. A user-friendly tool will enable researchers 
to conveniently select the most suitable wearable for their 
study. The wearable database will continue to be moderated 
by a team of SiA researchers, but a future goal is to allow 
a broader group of researchers to actively contribute to this 
effort. They could propose devices to be added, point to 
additional identified reliability, validity, and usability stud-
ies, and suggest other points of information to be added to 
the database based on their user experience.
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